Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Xiao-Fang Li,* Ya-Qing Feng, Bo Gao and Hong-Liang Chen

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail:
Ixf7212@yahoo.com.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
$R$ factor $=0.034$
$w R$ factor $=0.107$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see
http://journals.iucr.org/e.

## 1-Methyl-spiro[2.3']oxindole-spiro[3.2"]$5^{\prime \prime}, 6^{\prime \prime}$-dihydroimidazo[ $\left.2^{\prime \prime}, 1^{\prime \prime}-b\right]$ thiazol$3^{\prime \prime}$-one-4-(2-benzo[1,3]dioxol-5-yl)pyrrolidine

The title compound, $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$, was synthesized by the intermolecular [3+2] cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-benzo[1,3]dioxol-5-ylmethylene-5,6-dihydro-imidazo-[2,1-b]thiazol-3-one. In the molecule, two spiro junctions link a planar 2-oxindole ring, a pyrrolidine ring in an envelope conformation and a 5,6-dihydro-imidazo[2,1-b]thiazol-3-one ring. Two molecules are connected into a dimer by two N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

## Comment

Spiro-compounds are an important class of naturally occurring substances, characterized by highly pronounced biological properties (Kobayashi et al., 1991; James et al., 1991). 1,3Dipolar cycloaddition reactions are important processes for the construction of spiro-compounds (Caramella \& Grunanger, 1984). In this paper, the structure of the title compound, 1-methyl-spiro[2.3']oxindole-spiro[3.2"]5 $5^{\prime \prime}, 6^{\prime \prime}$-dihydroimidazo $\left[2^{\prime \prime}, 1^{\prime \prime}-b\right]$ thiazol- $3^{\prime \prime}$-one-4-(2-benzo[1,3]dioxol5 -yl)pyrrolidine, (I), is reported. The title compound was synthesized by the intermolecular [3+2] cycloaddition of azomethine ylide, derived from isatin and sarcosine by a decarboxylative route, and 2-benzo[1,3]dioxol-5-ylmethylene-5,6-dihydro-imidazo[2,1-b]thiazol-3-one. The molecular structure of (I) is illustrated in Fig. 1. There are two spiro junctions in the molecule, which consists of a 2-oxindole ring, a pyrrolidine ring and a benzo[4,5]imidazo[2,1-b]thiazol-3one ring. The pyrrolidine ring is not planar, having an envelope conformation. Two molecules are connected by N $\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Fig. 2), with an $\mathrm{N} \cdots \mathrm{N}$ distance of 2.939 (2) $\AA$ and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ angle of $175^{\circ}$. The structure of 1-methyl-spiro[2.3']oxindole-spiro[3.2"] $5^{\prime \prime}, 6^{\prime \prime}$-dihydroimidazo $\left[2^{\prime \prime}, 1^{\prime \prime}-b\right]$ thiazol-3"-one-4-phenylpyrrolidine was reported previously (Li et al., 2003).

Received 26 August 2003
Accepted 4 September 2003
Online 11 September 2003

(I)


Figure 1
The molecular structure of (I), with $30 \%$ probability ellipsoids. H atoms have been omitted for clarity.


Figure 2
The crystal structure of (I), viewed along the $a$ axis. Hydrogen bonds are indicated by dashed lines. H atoms are omitted for clarity.

## Experimental

A mixture of 2-benzo[1,3]dioxol-5-ylmethylene-5,6-dihydro-imidazo[2,1-b]thiazol-3-one ( 1 mmol ), isatin $(1 \mathrm{mmol})$ and sarcosine ( 1 mmol ) was refluxed in methanol ( 60 ml ) until the starting materials had disappeared, as evidenced by TLC. After the reaction
was over, the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ ethyl acetate 2:1) to give the title compound (I). m.p. 543-544 K; IR $(\mathrm{KBr}): 3352.0(-\mathrm{NH}), 1720.4,1686.7(\mathrm{C}=\mathrm{O}) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta$, p.p.m.): $1.69\left(s, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 2.26\left(s, 3 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{3}\right), 3.29\left(m, 1 \mathrm{H},-\mathrm{CH}_{2}\right)$, $4.33\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2}\right), 5.42(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}), 5.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 6.41-$ $7.73(m, 7 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.89(b s, 1 \mathrm{H},-\mathrm{NH}) .20 \mathrm{mg}$ of (I) were dissolved in 15 ml dioxane and the solution kept at room temperature for 15 d . Natural evaporation afforded colorless single crystals of (I), suitable for X-ray analysis.

Crystal data
$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=448.49$
Triclinic, $P \overline{1}$
$a=8.741$ (4) £
$b=9.255$ (4) $\AA$
$c=14.097$ (7) $\AA$
$\alpha=85.690(7)^{\circ}$
$\beta=72.206(7)^{\circ}$
$\gamma=79.169$ ( 8$)^{\circ}$
$V=1066.4(9) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.397 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation }
\end{aligned}
$$

Cell parameters from 1010
reflections
$\theta=2.5-26.5^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, colorless
$0.28 \times 0.22 \times 0.20 \mathrm{~mm}$

## Data collection

Bruker SMART CCD area-detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan (SADABS; Bruker, 1997)
$T_{\text {min }}=0.863, T_{\text {max }}=0.960$
14787 measured reflections

## Refinement

Refinement on $F^{2}$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.107$
$S=1.09$
4388 reflections 290 parameters

4388 independent reflections
3798 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-10 \rightarrow 10$
$k=-11 \rightarrow 11$
$l=-17 \rightarrow 17$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.084 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.29 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.21 \mathrm{e}^{-3}$

H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.93-0.98 \AA)$ and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

Data collection: $S M A R T$ (Bruker, 1997); cell refinement: $S M A R T$; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

## References

Bruker (1997). SADABS, SMART, SAINT and SHELXTL. Versions 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Caramella, P. \& Grunanger, P. (1984). 1,3-Dipolar Cycloaddition Chemistry, edited by A. Padwa, Vol. 1, pp. 291-312. New York: Wiley.
James, D. M., Kunze, H. B., Faulkner, D. J. (1991). J. Nat. Prod. 54, 1137-1140.
Kobayashi, J., Tsuda, M., Agemi, K., Shigemori, H. Ishibashi, M. Sasaki, T., Mikami Y. (1991). Tetrahedron. 47, 6617-6622.
Li, X. F., Feng, Y. Q., Shi, D. X. \& Li, G. (2003). Acta Cryst. E59, o1288-o1289. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

